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The article presents a method of solving heat-conduction problems by determining 
the initial temperature field or the instant when some physical event occurred. 

The inverse heat-conduction problems (IHCP), which are called retrospective or reversed 
[1-3], include problems connected with the determination of the initial temperature field or 
the instant when, e.g., an event began or ended, which may have been a phase transformation, 
a given temperature that was attained at some point of a body, etc. 

In [ormulating retrospective IHCP some additional information ensuring an unambiguous 
solution of the IHCP is specified instead of unknown initial conditions that are indispen- 
sable for solving direct heat-conduction problems; such information is usually either a 
temperature field some time after the initial instant, or a change of temperature or of heat 
flux at one or several points of a body in the course of a certain time interval. 

We will examine the following one-dimensional heat-conduction problem: 

c f l - - = - -  r rk  -~-H. ro<r<R, % < ~ < ~ ;  
~ T  1 "P . 

ar (1) 

t(r, ~b;'=(D(r]; (2) 

t (R ,  ~) = t~(~); (3 )  

t (ro, ~) = to (~), (4 )  

where F is a geometric parameter whose value 0, i, or 2 corresponds to Cartesian, cylindrical, 
and spherical coordinates, respectively. From Eqso (1)-(4) we find the initial temperature 
distribution: 

t(r, %) = ~(r), (5) 

The solution of the problem (1)-(4) may also be used for determining the instant T* at 
which the given event occurred. In this case the instant T b is chosen, e.g., by trial and 

error from the condition T b < "[*. Then, as a result of solving the direct heat-conduction 

problem (i), (3)-(5), we determine T*. 

For solving retrospective IHCP the method of discrete superposition [4] is used, which 
proved very successful in solving boundary, coefficient, geometric, and some other znve" ~s_ 
problems [5--9]~ According to this method the solution of problem (1)--(4) is sought in the 
form of a model function tM(r , T) which satisfies the heat-conduction equation (I) and the 

boundary conditions (3), (4) in the entire range under examination. Condition (2) is satis- 
fied only at some set of points whose number is determined in each actual case by proceeding 
from the required accuracy of the solution and from the error of the input data. Then the 
solution of the IHCP reduces to seeking some parameters of the system aj (j = i, 2, o~ J) 

which are controlled in accordance with the requirement of coincidence of the model tempera- 
ture function tM(r , T) with condition (2) at J points of the interval ro < r < R. 

As parameters of the system it is expedient to choose characteristics which determine 
the function ~(r) in condition (5)~ it suffices to specify it for the examined problem to 
become a direct heat-conduction problem. 
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To express the function ~ (r) through the controlling parameters a., we expand it into 
J 

some functional series over the coordinate r, e.g., into a Taylor series, and in this series 
we confine ourselves to some number of first terms: 

(r)-=boq-b, r--r~ 
I ~ - - F  0 

(F -- , F ~ --ro)(R r) _Fba (r--ro)Z(R--r) q-b~ (r~r~ ( 6 )  
u 2 " -F "'" 

( R - - t o )  z ( / ~ - - r o P  ( / ~ - - r o )  ~ 

Series (6) is characterized by the fact that its terms, from the third one onward, vanish at 
the bounds of the interval of change of the function @(r). If we proceed from the require- 
ment of agreement of (6) with the boundary conditions (3), (4), we obtain 

r - -  r o (r - -  ro) (P, - -  r) 
�9 ,~ (r) = to (0) + - - -  t,~ (0) + a,. + 

/~. - - r o  (R - -  ro)2 (7 )  

(r - -  ro] z (R - -  r) (r - -  to) g4-1-[(g-kl )/2] (R - -  r) [( i+l)/2] @ a 2 ( r - - r o )  z ( R - r )  -k aa " Jr- . . .  -~- as 
( R - - - t o p  (R - -  to) ~ . (R -7  roF+~ 

where [(J + 1)/2] is the integral part of the number (J + 1)/2. To calculate the parameters 
of the system-- the coefficients a. (j = i, 2, ..., J) of a truncated series representing the 

3 
function ~ -- each of them is matched with a certain value of the specified function ~(r.) at 

3 
the point r. (j = i, 2, ..., J). The points r~ may be chosen arbitrarily but to improve the 

J J 
convergence of series (7) it is expedient to confront the parameter a~ with the value of the 

function ~ at the point rl = (ro + R)/2, the parameter a2 at the point r2 = ro + 3/4(R-- ro), 

the parameter as at the point r3 = ro + 1/4 (R-- ro), etc. In the first approximation the 

values of the parameters a~ are specified arbitrarily, e.g., a. = 0. If we have available 
3 J 

the function ~(6)(r) in the B-th approximation, we can, by solving the system of equations 

(i), (3)-(5), determine the model temperature function tM(B) in the approximation B. For 

this purpose we may use, e.g., the explicit difference scheme which in the grid Q=r0~-fh. 

i=0, 1 .... ,I, h= R--ro., Tn~-nl, n=1, 2, ..., may be represented in the following form: 
I 

t7 + l  = t~ ~ 1 , n h ) r  n 
-'- co (ro + ih) v h z {t~+~ (ro § ih -+- + ~ (to + ih) v] • 

•  l i I ,  i =  I, 2, . . . ,  I - - 1 . ;  
cp 

h ~ = ~ ( r o +  ih); t~ +~ : to('~n+0; t7 +~ = tR(x, ,+l) .  

(8) 

( 9 )  

The difference Nj(6)=tM(~)(rj, %)--~(rj) , where the model function is determined from Eqs. (8)- 

(9) with the value @(6) in the ~-th approximation, is the discrepancy that is used as the 

signal of mismatch for the subsequent approximations. 

The values a. satisfying the condition 
J 

I~I < 6, (I0) 

where ~ is some small positive number, are sought by the method of subsequent minimization 
of the discrepancies [4]. This method is realized in the following manner. Each parameter 
is matched with a certain discrepancy ~j, j = i, 2, ...~ J. A small trial step Aax over 

the first parameter ~I is made, and the direct problem is solved; as a result, the increment 

of the corresponding discrepancy Aqx and the approximate value of the derivative Oq,/Oa,= 

AqI/Aal are determined. Then several working steps over parameter ~i are made with fixed 
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values of the other parameters until condition (i0) for the discrepancy q~ (j = i) is ful- 
filled. The magnitude of the working steps is determined by the formula 

( l l )  

in which the coefficient A. is put equal to unity. The values of the derivative 3aj/~j 
J 

may be refined after each B-th working step, i.e., 

(12) 

We assume that for the discrepancies qj, j = i, 2, .~ s, s < J, corresponding to the para- 

meters a~, a2, ..., as, condition (i0) is already satisfied, and that we have to determine 

the values of the parameters al, a2, ~.., as+~ which ensure that (i0) is satisfied 

for the discrepancies Dj, j = i, 2, ..., s + i. At first we make a trial step Aas+ ~ over 

the parameter as+~, and then working steps over this parameter, and the magnitude of the 

steps is determined by (ii). Each step over the parameter as+ ~ is carried out after a cycle 

of calculations which is connected with the change of the parameters al, a2 ,  ..., a s until 

condition (i0) for j = I, 2 ..... s is satisfied. ~his cycle differs from the cycle of 

calculations preceding the change of the parameter as+ ~ by the fact that no trial steps for 

determining the derivative CNj/r ]=1, 2 ..... s are made. The derivative for the first working 

step is taken from the preceding cycle, and in this case the increments Aa. are calculated 
] 

by formula (ii) for 0 < Ao ~ i. The calculation is discontinued when for all components 

qj, j = i, ..., J of the discrepancy vector condition (I0) is fulfilled. 

The results of solving various IHCP -- boundary, coefficient, geometric, retrospective 
problems -- in unidimensional and two-dimensional statement testify to the efficiency of the 
described method. The circumstance that the derivatives r change very slightly from 
step to step over parameter a. makes it possible to attain very quickly (in 2-3 steps) that 

3 
condition (I0) is satisfied. 

In processing experimental data, the magnitude of J is determined as the minimum number 

of points of the interval [ro, R] which ensures for all the measured values of ~(r ), m = 

i, 2, ..., M, M > J that the condition [[t~(rm, *e)--~(%) ~ owillbefulfilled, where~ is the 

level of the discrepancy determined by the error of specifying the input data. 

To verify the described method of solving retrospective problems, a numerical experi- 
ment containing three stages was carried out. At the first stage the direct heat-conduction 
problem is solved: 

at a2t 

a~ ax~ 
, O < x < L ,  Xb<'~<~; 

t(x, %) = g + gxsin(g2x); t(O, ~ )=  g3 + g~'~; t(L, -~)=gs+gs-~ z. 

At the second stage the IHCP is solved on the assumption that the field t(x, T b) at the 

instant T b is unknown. Instead of this, the temperature distribution t(x, T ) at the instant 
e 

Te, found as a result of solving the direct problem, is specified. 

At the third stage the stability of the solution relative to the distortion of the input 

data is investigated. For this, a distortion in the form of the sinusoidal function At(x) = 

gTsin(gsx) was superimposed on the temperature field. Figure I presents the results of 
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Fig. 1 Fig. 2 

Fig. i. Results of calculating the temperature t(x, T b) at the 

preceding instant: i) exact value of the function t(x, m b) used 

in solving the direct problem; 2) solution of the IHCP with the 
undistorted input data; 3) solution of the IHCP with g7 = 0.06; 

4) the same, with g7 = 0.I0. 

Fig. 2. Dependence of the ratio of the error of the solution to 

the initial information on the Fourier number. 

solving a retrospective IHCP with the following initial data: g = g~ = g3 = i; g2 = 0.25~ 

g4 = 0.05; g5 = 1.6; g6 = 0.0065; gs = 0.3; m b = 0; me = 0.75; a = i; L = i; 6 = 10 -9 . Figure 

2 shows the change of the ratio of the error of the solution E to the error of the initial 
S 

information Ei in dependence on the number Fo = a(r e -- 7b )/L 2. The considerable increase of 

E /E. for Fo > 0.5 is due to the fact that with increasing Fourier number the influence of 
S 1 

the initial data on the temperature field decreases, and with Fo > i it is quite insignificant. 
i 

The realization of one variant of the given problem on a BESM-4M computer requires about 
i0 minutes of computer time. The results of the calculations prove the effectiveness and 
sufficient accuracy of the described method of solving retrospective problems. 

The method of discrete superposition may also be used for finding the temperature field 
at the initial instant in bodies of complex shape. In this case the function W is expanded 

according to the degrees of its variables into a series which for two-dimensional bodies has 

the form 

= bl + b2x + b3y + b ,x  2 + b~xy + bsy z + �9  �9 (13) 

The parameters of the system a. are chosen on the basis of the series (13) after correlations 
J 

between its coefficients have been established that are connected with satisfying the speci- 

fied boundary conditions by (13). The parameters of the system a., j = I, 2, ..., J, are 
O 

confronted with the temperatures at the points of the space (x, y, T) which are determined 

by the specified additional information. 
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QUESTION OF THE CONVERGENCE OF ITERATION METHODS 

OF SOLVING THE INVERSE HEAT-CONDUCTION PROBLEM 

V. V. Mikhailov UDC 536.24.02 

The convergence of iteration methods of solving the inverse heat-conduction problem 
depending on the type of desired boundary function is numerically investigated. 

Iteration methods of solving inverse boundary-value heat-conduction problems (IHCP) in 
an extremal formulation are utilized extensively at this time. These methods are based on 
the search for boundary functions by starting from the requirement of minimization of a 
certain functional characterizing the measure of the deviation of the calculated temperatures 
from the temperature measured during the experiment. 

Both the density of the heat flux (boundary condition (BC) of the second kind) and the 
temperature of the surface being heated (BC of the first kind) can be considered as the func- 
tions desired. 

Fundamental attention is paid in the development of iteration methods to the construction 
of iterative schemes based on a search for the time dependence of the thermal flux density 
[1-3]. At the same time, iteration schemes based on the search for the time dependence of 
the surface temperature have a definite advantage since it is necessary to find a continuous 
function with a known value at the initial instant t = 0 (the temperature distribution over 
the thickness is usually known at t = 0). The thermal flux density can hence be determined 
by conversion of the boundary condition. 

To estimate the convergence of iterative methods of solving the IHCP as a function of 
the kind of desired boundary function, we consider the following inverse problem in the 

domain { O ~ x ~ 8 , 0 ~ t ~ t p }  : 

OT 8 
C (T) -- -- 

Ot Ox 
-[,~(T) 8-~x ] ,  O < x < b  , O ~ t ~ t ; ,  

T(x, 0)= q~(x), O ~ x ~ b ,  

( 2 - - K ) T ( O ,  t ) + ( 1 -  K)~(T) OT(O, t) 
Ox 

-- 2~(T) aT(b, t) =q2(t), 
Ox 

= u (t), 

v (b, t) = f (t), 

(i) 

(2) 

(3) 

(4) 

(5) 

where C(T), %(T), ~(x), q2(t), f(t) are known functions, K is a parameter governing the type 
of BC on the domain boundary x = 0 (K = I is a BC of the first kind and K = 2 of the second 
kind). 
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